Abstract

In this paper we propose a novel solution for performance enhancement of dual-hop orthogonal frequency division multiplexing (OFDM) based decode-and-forward (DF) relay system, which assumes that relay station uses more than one antenna for downlink communications and implements transmit antenna selection (TAS) on subcarrier basis jointly with ordered subcarrier mapping (SCM). Ordered SCM is technique where subcarriers from the first hop are mapped to corresponding subcarriers on the second hop in accordance to their instantaneous signal-to-noise ratios (SNRs). It is proven to be a mapping scheme that maximizes the achievable ergodic capacity in OFDM based relay systems, while enabling bit error rate (BER) improvement at the same time. In order to assess the level of BER performance improvement in the system proposed in this paper, we analytically derive closed form BER expression of binary phase shift keying modulated OFDM DF relay system with TAS and SCM, assuming a scenario with Rayleigh fading statistics on both hops. Additionally, for further BER reduction, we analyze the combination of TAS with a modified SCM scheme, in which the subcarriers having the lowest SNRs on both hops are omitted. All derived analytical results are completely verified through simulations, showing that significant BER performance improvements are achieved with the novel proposed OFDM relay system, compared to the systems implementing only SCM, or only TAS, which approves that it can be considered as an interesting solution for the next generation of mobile cellular systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call