Abstract

The bioproduction of 3-methylcatechol from toluene via Pseudomonas putida MC2 was performed in a solid-liquid two-phase partitioning bioreactor with the intent of increasing yield and productivity over a single-phase system. The solid phase consisted of HYTREL, a thermoplastic polymer that was shown to possess superior affinity for the inhibitory 3-methylcatechol compared to other candidate polymers as well as a number of immiscible organic solvents. Operation of a solid-liquid biotransformation utilizing a 10% (w/w) solid (polymer beads) to liquid phase ratio resulted in the bioproduction of 3-methylcatechol at a rate of 350 mg/L-h, which compares favorably to the single phase productivity of 128 mg/L-h. . HYTREL polymer beads were also reconstituted into polymer sheets, which were placed around the interior circumference of the bioreactor and successfully removed 3-methylcatechol from solution resulting in a rate of 3-methylcatechol production of 343 mg/L-h. Finally, a continuous biotransformation was performed in which culture medium was circulated upwards through an external extraction column containing HYTREL beads. The design maintained sub lethal concentrations of 3-methylcatechol within the bioreactor by absorbing produced 3-methylcatechol into the polymer beads. As 3-methylcatechol concentrations in the aqueous phase approached 500 mg/L the extraction column was replaced (twice) with a fresh column and the process was continued representing a simple and effective approach for the continuous bioproduction of 3-methylcatechol. Recovery of 3-methylcatechol from HYTREL was also achieved by bead desorption into methanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.