7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1088/1402-4896/ac65bf
Copy DOIJournal: Physica Scripta | Publication Date: Apr 21, 2022 |
Citations: 5 | License type: iop-standard |
Considering that chaotic systems are highly sensitive to parameters, we design two new parameter variable chaotic systems by constructing parameter perturbation items. These systems are constructed using the state variables of the Liu chaotic system to perturb the parameters of the Lorenz and Chen chaotic systems and are called the Lorenz-Liu chaotic system (LLCS) and Chen-Liu chaotic system (CLCS), respectively. In particular, the parameter perturbation items constructed in this study are not periodic but rather chaotic signals and change in real time. Compared with the original systems, they exhibit more complex randomness and dynamic behaviors. In the proposed cryptosystem, which considers the concept of Deoxyribonucleic Acid (DNA), the solar radio spectrogram is dynamically encoded through the LLCS, and then, the CLCS is used to scramble and diffuse the decoding matrices. In addition, the algorithm uses the 256-bit Secure Hash Algorithm (SHA-256) to generate the initial keys, which enhances the algorithm’s sensitivity to plaintext. Simulation results and security analysis show that the cryptosystem has a large key space and high key sensitivity, and can resist various attacks, such as differential attacks and chosen-plaintext attacks.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.