Abstract

• A sustainable solar multigeneration system was proposed to adapt to climate change. • Comparative thermodynamic, cost, risk, and environmental analysis were conducted. • The system offers 13 times less water withdrawal than conventional power plants. • Exergetic efficiency of the eco-friendly system can reach up to 74.37% • The novel system manages to generate products at a cost rate of 0.017 $.MWh −1. Conventional steam-driven multigeneration systems contribute to environmental damage by losing significant freshwater and emitting greenhouse gases. Here, a novel solar-powered steam jet ejector-based multigeneration system independent of external cold utilities is proposed for climate change adaptation. A Rankine cycle, an organic Rankine cycle, and a reverse osmosis desalination unit are fully integrated for clean power, cooling, and freshwater production employing. The thermo-mathematical model was evaluated considering thermodynamic efficiencies, annual costs, exergorisk, and global warming potential in a stand-alone and comparative framework. The water utilization of the hot utility was compared with two traditional fossil fuels by conducting a water-exergy nexus analysis. The analytical results showed that most of the total exergy destruction (73%) occurred in the solar collectors. The proposed system had 0.0171 $.MWh −1 cost of energy and an exergy efficiency of 57.29 % by employing R11. Compared to a natural gas-fired utility, the proposed solar-powered system reduced freshwater withdrawal, and consumption by 16 and 13 times, respectively. The system could achieve the exergetic efficiency of 74.37 % with the cost of energy of 0.013 $.MW −1 in a parametric model. Finally, R365mfc emerged as the optimal fluid for the proposed system by satisfying all performance criteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.