Abstract

This paper discusses the design of a novel dual (solar + electromagnetic) energy harvesting powered communication system, which operates at 2.4 GHz ISM band, enabling the autonomous operation of a low power consumption power management circuit for a wireless sensor, while featuring a very good “cold start” capability. The proposed harvester consists of a dual port rectangular slot antenna, a 3-D printed package, a solar cell, an RF-dc converter, a power management unit (PMU), a microcontroller unit, and an RF transceiver. Each designed component was characterized through simulation and measurements. As a result, the antenna exhibited a performance satisfying the design goals in the frequency range of 2.4–2.5 GHz. Similarly, the designed miniaturized RF-dc conversion circuit generated a sufficient voltage and power to support the autonomous operation of the bq25504 PMU for RF input power levels as low as −12.6 and −15.6 dBm at the “cold start” and “hot start” condition, respectively. The experimental testing of the PMU utilizing the proposed hybrid energy harvester confirmed the reduction of the capacitor charging time by 40% and the reduction of the minimum required RF input power level by 50% compared with the one required for the individual RF and solar harvester under the room light irradiation condition of 334 lx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.