Abstract

The large popularity and rapid technology of smartphones have opened new avenues for their integration into different analytical methodologies and drug quality monitoring as a portable, easily accessible, and user-friendly detector. Herein, a novel and portable smartphone-based high-performance thin layer chromatographic (HPTLC) approach is proposed for the simultaneous analysis of two urological drugs, alfuzosin and solifenacin, which treat benign prostatic hyperplasia accompanied by overactive bladder syndrome. First, chromatographic separation was accomplished using an ecofriendly mobile phase, then the developed plates were visualized using Dragendorff's reagent and photographed via a smartphone's rear-facing camera fixed on a fabricated two-illumination-source chamber. The intensities of the drug spots were quantified using open-source image analysis software ImageJ over the concentration ranges of 2.0 to 30.0 μg per band for both drugs with acceptable results in ICH validation parameters. To improve the method's accuracy and reproducibility, various construction and shooting key parameters were investigated and optimized. Moreover, the study was extended to compare the obtained results with those of a benchtop densitometric method using a Camag TLC Scanner 3 at 215.0 nm; the densitometric method provided an additional assessment tool for peak purity and was capable of assaying lower drug concentrations over a linearity range of 0.2-8.0 μg per band for alfuzosin and 0.1-6.0 μg per band for solifenacin. The fast, simple, reliable, green merits of the proposed HPTLC/smartphone method suggest that it is an excellent platform for assaying marketed combined capsules and assuring their content uniformity. Moreover, the high sensitivity of the densitometric method was used, for the first time, to determine the residual content of the cited drugs on manufacturing equipment surfaces for cleaning validation. Finally, the environmental impact of the developed methods was evaluated based on green analytical chemistry principles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call