Abstract
The detection of corrosion at early stages could increase the service life of metal-based infrastructures in a cost-effective manner. Despite the recent progress in “smart” self-reporting corrosion sensing coatings, the development of environmentally friendly systems appropriate for steel substrate used in offshore applications remains a relevant challenge. In this study, a novel smart corrosion sensing coating, based on hexacyanoferrate intercalated Mg-Al LDH nanoadditive, was developed, aiming at the detection of early-stage corrosion of carbon steel. The detection mechanism is based on the ability of hexacyanoferrate ions to react with iron cations generated during the corrosion process, giving rise to a colorimetric signal, while LDH carriers provide a controlled release of active ions under corrosion conditions. The sensing nanoadditive was embedded into a commercial pigment-free water-based acrylic polyurethane coating. The nanomaterial was characterized structurally (XRD) and morphologically (STEM). The compatibility of the additive with the polymer formulation and its influence on the resulting coating performance was investigated in terms of rheological behavior, structure (FTIR), morphology (SEM/EDS), thermal (TGA, DSC) and mechanical (adhesion, hardness) properties. The corrosion protection ability of the coating was evaluated via EIS, while the sensing functionality was analyzed by visual analysis of the surface. The developed coating successfully detects early-stage corrosion of steel substrate at a lab scale, in conditions relevant to the use of metallic structures in offshore applications, demonstrating a correlation between the level of material degradation and the spectroscopic signal associated with the presence of the LDH functional nanoadditive. Furthermore, the observed decrease in coating barrier properties, caused by the presence of LDH, was overcome by the subsequent development of a multilayer coating system. Two different topcoats (epoxy- and polyurethane-based) were surveyed for this purpose, showing an improvement in the coating barrier properties without influencing the corrosion detection functionality of the sensing layer. The results were successfully validated by standard salt spray tests. The multilayer approach opens up the possibility to model coatings with different characteristics for various operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.