Abstract

Niemann-Pick disease type C1 (NP-C) is a prematurely lethal genetic lysosomal storage disorder with neurological and visceral pathology resulting from mutations in the NPC1 gene encoding the lysosomal transmembrane protein NPC1. There is currently no cure for NP-C, and the only disease modifying treatment, miglustat, slows disease progression but does not significantly attenuate neurological symptoms. AAV-mediated gene therapy is an attractive option for NP-C, but due to the large size of the human NPC1 gene, there may be packaging and truncation issues during vector manufacturing. One option is to reduce the size of DNA regulatory elements that are essential for gene expression, such as the promoter sequence. Here, we describe a novel small truncated endogenous NPC1 promoter that leads to high gene expression both in vitro and in vivo and compare its efficacy to other commonly used promoters. Following neonatal intracerebroventricular (ICV) injection into the CNS, this novel promoter provided optimal therapeutic efficacy compared to all other promoters including increased survival, improved behavioural phenotypes, and attenuated neuropathology in mouse models of NP-C. Taken together, we propose that this novel promoter can be extremely efficient in designing an optimised AAV9 vector for gene therapy for NP-C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call