Abstract
RhoGTPases are GDP/GTP molecular switches that control a wide variety of cellular processes, thereby contributing to many diseases, including cancer. As a consequence, there is great interest in the identification of small-molecule inhibitors of RhoGTPases. In the present paper, using the property of GTP-loaded RhoGTPases to bind to their effectors, we describe a miniaturized and robust assay to monitor Rac1 GTPase activation that is suitable for large-scale high-throughput screening. A pilot compound library screen revealed that the topoisomerase II poison MTX (mitoxantrone) is an inhibitor of Rac1, and also inhibits RhoA and Cdc42 in vitro. We show that MTX prevents GTP binding to RhoA/Rac1/Cdc42 in vitro. Furthermore, MTX strongly inhibits RhoGTPase-mediated F-actin (filamentous actin) reorganization and cell migration. Hence, we report a novel biochemical assay yielding the identification of RhoGTPase inhibitors and we present a proof-of-concept validation with the identification of MTX as a novel pan-RhoGTPase inhibitor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.