Abstract

Small heat shock proteins (sHsps) are a class of chaperones with low molecular weight, feathered by a C-terminal α-crystallin domain (ACD). They participate in reestablishing the stability of partially denatured proteins and therefore contribute to cellular homeostasis. In this work, we identified a sHsp homolog (designated as sHsp19) from Haliotis discus hannai, an economically important farmed mollusk in East Asia. sHsp19 possesses a sHsp hallmark domain, which exhibits the typical fold of ACD as revealed by a three-dimensional model constructed through an iterative threading assembly refinement method. The amino acid sequence sHsp19 shares low identities with any other known sHsps, with percentages below 35%. Besides, sHsp19 shows relatively distant phylogenetic relationships with sHsps of various mollusks, including two other identified sHsps of abalone subspecies. qRT-PCR analysis indicated that the expression of sHsp19 occurred in multiple tissues. Upon exposure to thermal, oxidative, and multiple toxic metal stresses, the level of sHsp19 mRNA was rapidly elevated in a persistent fashion, with the maximum increase up to 170.58-, 405.84-, and 361.96-fold, respectively. These results indicate sHsp is a novel sHsp that possesses the distinguishing structural feature of sHsps but has remote homologies with known sHsps. It is likely to be important in stress adaptation of abalone and may be applied as a bioindicator for monitoring pollution or detrimental changes of environment in abalone culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.