Abstract

Recent methods often introduce attention mechanisms into the skip connections of U-shaped networks to capture features. However, these methods usually overlook spatial information extraction in skip connections and exhibit inefficiency in capturing spatial and channel information. This issue prompts us to reevaluate the design of the skip-connection mechanism and propose a new deep-learning network called the Fusing Spatial and Channel Attention Network, abbreviated as FSCA-Net. FSCA-Net is a novel U-shaped network architecture that utilizes the Parallel Attention Transformer (PAT) to enhance the extraction of spatial and channel features in the skip-connection mechanism, further compensating for downsampling losses. We design the Cross-Attention Bridge Layer (CAB) to mitigate excessive feature and resolution loss when downsampling to the lowest level, ensuring meaningful information fusion during upsampling at the lowest level. Finally, we construct the Dual-Path Channel Attention (DPCA) module to guide channel and spatial information filtering for Transformer features, eliminating ambiguities with decoder features and better concatenating features with semantic inconsistencies between the Transformer and the U-Net decoder. FSCA-Net is designed explicitly for fine-grained segmentation tasks of multiple organs and regions. Our approach achieves over 48% reduction in FLOPs and over 32% reduction in parameters compared to the state-of-the-art method. Moreover, FSCA-Net outperforms existing segmentation methods on seven public datasets, demonstrating exceptional performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.