Abstract

The mouse excisional dorsal full-thickness wound model with a silicon splint fixed on the skin has been widely used to mimic human wound healing. However, the method cannot accurately quantify dermal remodeling, since the initial point of epithelialization on the wound surface is unclear. To overcome this limitation, we have developed a novel mouse excisional wound model to assess the degree of epithelial extension and regeneration, using a plastic ring-shaped splint fixed beneath the surrounding epidermal tissue. At the end of the experiment, tissue samples were fixed in formalin, the splint was excised, and paraffin sections were prepared. Splint holes, corresponding to the prior location of the splint, were evident on the tissue cross-sections, and the epidermis above the holes was considered the initial excision site. The epidermal contraction and epithelial regeneration, as independent essential tissue alterations in wound healing, could be distinguishable and quantified. Compared with previous splint models, this method provides an accurate evaluation of epidermal processes in wound healing, and can be a platform to assess the effects of various wound healing factors. J. Cell. Physiol. 232: 1225-1232, 2017. © 2016 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.