Abstract

In general, the strap-down inertial navigation system (SINS)/Doppler velocity log (DVL)-integrated navigation method can provide continuous and accurate navigation information for autonomous underwater vehicles (AUV). This SINS/DVL fusion is the loosely integrated method, in which DVL may contain large error or does not work when some beam measurements are inaccurate or outages for complex underwater environment. To solve these problems, in this article, a novel tightly integrated navigation method composed of an SINS, a DVL, and a pressure sensor (PS) is proposed, in which beam measurements are used without transforming them to 3-D velocity. The simulation and vehicle test show that the proposed method can significantly outperform the traditional loosely integrated method in providing estimation continuously with higher accuracy when DVL data are inaccurate or unavailable for a complex environment. Compared with loosely integrated method, the position accuracy of the proposed method has improved by 32.5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.