Abstract

The purpose of this paper is to present a novel single tube semi-active tuned liquid gas damper (SA-TLGD) for suppressing horizontal vibrations of tower-like structures and to study its damping effectiveness. The main difference to the well-known state-of-the-art tuned liquid column damper (TLCD) is the special geometric shape of the developed SA-TLGD. Contrary to the TLCD, the presented SA-TLGD only consists of a single horizontal tube that is partially filled with water. A large deformable elastic membrane with neglectable stiffness is used as the interface between the liquid and the air. Both ends of the horizontal tube are sealed and the resulting gas spring is used as the restoring force and frequency tuning parameter, respectively. The developed SA-TLGD is a semi-active vibration damping device, where its natural frequency and magnitude of energy dissipation can be re-adjusted during operation. Due to the lack of any vertical tube parts, this new type of vibration absorber requires significantly less installation space compared to the classical TLCDs. The equations of motion of the SA-TLGD and the coupled main system are derived by the application of conservation of momentum. The procedure of optimal tuning of the SA-TLGD is presented, and computational numerical studies are performed to demonstrate the damper effectiveness. It is shown that the application of the developed SA-TLGD provides a large reduction in the maximum horizontal forced vibration amplitudes of tower like-structures and that its semi-active functionality enables the possibility of re-adjustment any time during the operation life of the structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call