Abstract

Mature landfill leachate is difficult to be treated due to its complex composition, high concentration of ammonia, and low carbon/nitrogen ratio (C/N). Simultaneous partial nitrification, Anammox and denitrification (SNAD) with intermittent aeration was developed to achieve nitrogen removal from mature landfill leachate. An ammonia conversion efficiency of 99.3±0.3% and total nitrogen (TN) removal efficiency of 99±0.1% were obtained under the influent NH4+-N, SCOD and TN of 1950±250mg/L 1900±200mg/L and 2300±75mg/L, respectively. Full utilization of carbon source and high efficient Anammox were two significant factors in SNAD process. Based on the nitrogen balance, the nitrogen removal contribution was 77.1% for Anammox, and 15.6% for denitrification. Three dimensional excitation-emission matrix (EEM) fluorescence spectroscopy was used to detect dissolved organic matter (DOM) in a typical operation cycle for the first time, demonstrating that DOM increased during the anoxic phase and facilitated the reduction of excess NO3--N by denitrification. Quantitative polymerase chain reaction (QPCR) analysis revealed dominant bacterial groups, aerobic ammonia-oxidizing bacteria (AOB) and anaerobic ammonia oxidizing bacteria (AnAOB), which accounted for 12.99% and 8.32% of total bacteria respectively. As a whole, in the SNAD process, nitrogen and COD are removed from the wastewater simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call