Abstract
The use of optical transition radiation (OTR) for charged particle beam imaging is a well-established and commonly used technique. As such, simulations of the images expected from an arbitrary transverse beam profile are important in both the design of such OTR imaging systems and the analysis of the data. However OTR image simulations of high-energy, low-emittance particle beams, that are becoming commonplace within accelerator physics, can be extremely challenging to produce and limited in their account of practical factors. In this paper we systematically show how high-energy OTR image simulations can be carried out using low-energy parameters, whilst providing little deviation in the resulting transverse beam profiles. Simulations require significantly less resources and can be combined with further analysis techniques, which would otherwise be too costly to be practically viable. Using this methodology as a basis for OTR simulations, we present a new method of analyzing OTR transverse beam profile data for high-energy, low-emittance beams. In contrast to previous work, this algorithm includes the effects of a finite bandwidth and directly allows the inclusion of optical effects, such as chromatic aberration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Optics Express
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.