Abstract
In this study, silica@chitosan-glutaraldehyde (Si@Cs-G) was synthesized as a novel adsorbent for extraction of Penicillin G (PG) from the synthetic and real samples followed by HPLC determination. The synthesized adsorbents were characterized by the scanning electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared (FTIR), dynamic light scattering (DLS), transmission electron microscopy (TEM) and nitrogen adsorption–desorption techniques. The factors influencing the extraction efficiency including pH, sorbent dose, extraction time, extraction solvent type and its volume were investigated and optimized.Under the optimal conditions (sorbent dosage: 25 mg, desorption solvent (acetonitrile) with volume of 0.75 mL; pH: 6 and extraction time: 50 min), the Si@Cs-G demonstrated high efficiency and linearity (R2 > 0.999) with the concentration of penicillin G ranging from 1 to 300 μg L−1. Extraction recovery in synthetic samples was 98.977%, with LOD = 0.493 μg L−1, LOQ = 1.638 μg L−1 and RSD < 1.953%. The method was successfully applied for determination of PG in real water samples (tap, river, lake and well water) and wastewater samples (SH and SHB hospital effluent). The obtained relative recoveries were in the range of 91.31% -123.27% with RSD less than 6.34% for all the real samples. The dominant mechanism in the PG adsorption process was involved in the π-π interaction, hydrogen bonding, and electrostatic interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.