Abstract
BackgroundThyroid cancer (TC) is the most common endocrine malignancy worldwide. The incidence of TC is high and increasing worldwide due to continuous improvements in diagnostic technology. Therefore, identifying accurate prognostic predictions to stratify TC patients is important.MethodsRaw data were downloaded from the TCGA database, and pairwise comparisons were applied to identify differentially expressed immune-related lncRNA (DEirlncRNA) pairs. Then, we used univariate Cox regression analysis and a modified Lasso algorithm on these pairs to construct a risk assessment model for TC. We further used qRT‒PCR analysis to validate the expression levels of irlncRNAs in the model. Next, TC patients were assigned to high- and low-risk groups based on the optimal cutoff score of the model for the 1-year ROC curve. We evaluated the signature in terms of prognostic independence, predictive value, immune cell infiltration, immune status, ICI-related molecules, and small-molecule inhibitor efficacy.ResultsWe identified 14 DEirlncRNA pairs as the novel predictive signature. In addition, the qRT‒PCR results were consistent with the bioinformatics results obtained from the TCGA dataset. The high-risk group had a significantly poorer prognosis than the low-risk group. Cox regression analysis revealed that this immune-related signature could predict prognosis independently and reliably for TC. With the CIBERSORT algorithm, we found an association between the signature and immune cell infiltration. Additionally, immune status was significantly higher in low-risk groups. Several immune checkpoint inhibitor (ICI)-related molecules, such as PD-1 and PD-L1, showed a negative correlation with the high-risk group. We further discovered that our new signature was correlated with the clinical response to small-molecule inhibitors, such as sunitinib.ConclusionsWe have constructed a prognostic immune-related lncRNA signature that can predict TC patient survival without considering the technical bias of different platforms, and this signature also sheds light on TC’s overall prognosis and novel clinical treatments, such as ICB therapy and small molecular inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.