Abstract
Necroptosis is closely related to the occurrence and development of tumors, including glioma. A growing number of studies indicate that targeting necroptosis could be an effective treatment strategy against cancer. Long non-coding RNA (lncRNA) is also believed to play a pivotal role in tumor epigenetics. Therefore, it is necessary to identify the functions of necroptosis-related lncRNAs in glioma. In this study, the transcriptome and clinical characteristic data of glioma patients from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases were collected, and the differentially expressed necroptosis-related lncRNAs in TCGA that have an impact on overall survival (OS) were screened out to construct risk score (RS) formula, which was verified in CGGA. A nomogram was constructed to predict the prognosis of glioma patients based on clinical characteristics and RS. In addition, Gene Set Enrichment Analysis (GSEA) was used to analyze the main enrichment functions of these necroptosis-related lncRNAs and the immune microenvironment. A total of nine necroptosis-related lncRNAs have been identified to construct the RS formula, and the Kaplan–Meier (K-M) survival analysis showed significantly poorer outcomes in the high RS group in both TCGA and CGGA databases. Moreover, the receiver operating characteristic (ROC) curve shows that our prediction RS model has good predictability. Regarding the analysis of the immune microenvironment, significant differences were observed in immune function and immune checkpoint between the high RS group and the low RS group. In conclusion, we constructed a necroptosis-related lncRNA RS model that can effectively predict the prognosis of glioma patients and provided the theoretical basis and the potential therapeutic targets for immunotherapy against gliomas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.