Abstract

The flatworm Taenia solium causes human and pig cysticercosis. When cysticerci are established in the human central nervous system, they cause neurocysticercosis, a potentially fatal disease. Neurocysticercosis is a persisting public health problem in rural regions of Mexico and other developing countries of Latin America, Asia, and Africa, where the infection is endemic. The great variability observed in the phenotypic and genotypic traits of cysticerci result in a great heterogeneity in the patterns of molecules secreted by them within their host.This work is aimed to identify and characterize cysticercal secretion proteins of T. solium cysticerci obtained from 5 naturally infected pigs from Guerrero, Mexico, using 2D-PAGE proteomic analysis. The isoelectric point (IP) and molecular weight (MW) of the spots were identified using the software ImageMaster 2D Platinum v.7.0. Since most secreted proteins are impossible to identify by mass spectrometry (MS) due to their low concentration in the sample, a novel strategy to predict their sequence was applied. In total, 108 conserved and 186 differential proteins were identified in five cysticercus cultures. Interestingly, we predicted the sequence of 14 proteins that were common in four out of five cysticercus cultures, which could be used to design vaccines or diagnostic methods for neurocysticercosis. A functional characterization of all sequences was performed using the algorithms SecretomeP, SignalP, and BlastKOALA. We found a possible link between signal transduction pathways in parasite cells and human cancer due to deregulation in signal transduction pathways. Bioinformatics analysis also demonstrated that the parasite release proteins by an exosome-like mechanism, which could be of biological interest.

Highlights

  • Cysticercosis is a parasitic disease that affects humans and swine

  • Human neurocysticercosis is a major neglected tropical disease caused by Taenia solium

  • We introduce a novel strategy to predict the sequence of T. solium secreted proteins using 2D-PAGE proteomic analysis and the T. solium genome

Read more

Summary

Introduction

Cysticercosis is a parasitic disease that affects humans and swine. It is caused by the establishment of the larval form of Taenia solium in skeletal muscle and brain tissues. When cysticerci are established in the central nervous system of the host, they cause neurocysticercosis (NC). This potentially life-threatening disease is endemic in rural areas of Latin America, Southeast Asia (India, China, and Nepal) and sub-Saharan Africa, where poverty prevails and hygiene is poor [1]. Secreted proteins (ESPs) could provide us with important information on the host-parasite relationship [4,5,6]. ESPs have been involved in key biological processes like adhesion, migration, cell-cell communication, differentiation, proliferation, morphogenesis, survival, defense, virulence, and immune response [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call