Abstract

The bearingless concept is a plausible alternative to the magnetic bearing drives. It provides numerous advantages like minimal maintenance, low cost, compactness and no requirement of high-performance power amplifiers. Controlling the rotor position and its displacements under parameter variations during acceleration and deceleration phases was not effective with the use of conventional controllers like proportional–integral–derivative (PID) and fuzzy-type controllers. Hence, to get the robust and stable operation of a bearingless switched reluctance motor (BSRM), a new robust dynamic sliding mode controller has been proposed in this paper, along with a sensorless operation using a sliding ode observer. The rotor displacement tracking error functions and speed tracking error functions are used in the designing of both proposed methods of the sliding mode switching functions. To get a healthy and stable operation of the BSRM, the proposed controller’s tasks are divided into three steps. As a first step, the displaced rotor in any one of the four quadrants in the air gap has to pull back to the centre position successfully. The second step is to run the motor at a rated speed by exciting torque phase currents, and finally, the third step is to maintain the stable and robust operation of the BSRM even under the application of different loads and changes of the motor parameters. Simulation studies were conducted and analysed under different testing conditions. The suspension forces, rotor displacements, are robust and stable, and the rotor is pulled back quickly to the centre position due to the proposed controller’s actions. The improved performance characteristics of the dynamic sliding mode controller (DSMC)-based sliding mode observer (SMO) was compared with the conventional sliding mode controller (SMC)-based SMO.

Highlights

  • The high-speed motors operating in adverse locations involving high temperatures are often prone to motor breakdown

  • Nearly 51% of motor breakdowns are only due to bearing failures, which result in the shutdown of industrial process involving electric drives

  • Extensive research has been going on developing bearingless technology by eliminating the conventional mechanical-bearing system

Read more

Summary

Introduction

The high-speed motors operating in adverse locations involving high temperatures are often prone to motor breakdown. Nearly 51% of motor breakdowns are only due to bearing failures, which result in the shutdown of industrial process involving electric drives. The subsequent motor-bearing failures may affect modern industrial progress, causing undesirable and unreliable conditions. Solving motor bearing breakdowns became the most challenging task for researchers for a decade. Extensive research has been going on developing bearingless technology by eliminating the conventional mechanical-bearing system

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call