Abstract
In this paper, a novel analytical platform for the visual, sensitive and reliable analysis of mercury ions (Hg2+) is fabricated based on functionalized doped quantum dots. We synthesized a new specific nano-material, zinc dithiothreitol combined with graphene quantum dots (ZnNCs-NGQDs), by a simple and convenient method which, as an efficient luminophore, was then applied to construct an electrochemiluminescence (ECL) system for the first time. Under optimized conditions, the ECL sensor showed an excellent response for Hg2+ in the linear range of 1.0 mM to 10 pM, with a low detection limit of 3 pM. Moreover, the proposed method demonstrated satisfactory selectivity, stability and acceptable reproducibility for the detection of Hg2+. The recovery of tap water and lake water samples ranged from 96% to 105%, indicating the potential applicability of the proposed method for monitoring environmental water samples. Meanwhile, visual attempts for mercury ion detection by using doped quantum dots have also obtained satisfactory results. Importantly, our research revealed a viable method for improving the sensitivity and convenience of target studies in sensing fields derived from functional material design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Analytical methods : advancing methods and applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.