Abstract

The ski deflection with the associated temporal and segmental curvature variation can be considered as a performance-relevant factor in alpine skiing. Although some work on recording ski deflection is available, the segmental curvature among the ski and temporal aspects have not yet been made an object of observation. Therefore, the goal of this study was to develop a novel ski demonstrator and to conceptualize and validate an empirical curvature model. Twenty-four PyzoFlex® technology-based sensor foils were attached to the upper surface of an alpine ski. A self-developed instrument simultaneously measuring sixteen sensors was used as a data acquisition device. After calibration with a standardized bending test, using an empirical curvature model, the sensors were applied to analyze the segmental curvature characteristic (m−1) of the ski in a quasi-static bending situation at five different load levels between 100 N and 230 N. The derived curvature data were compared with values obtained from a high-precision laser measurement system. For the reliability assessment, successive pairs of trials were evaluated at different load levels by calculating the change in mean (CIM), the coefficient of variation (CV) and the intraclass correlation coefficient (ICC 3.1) with a 95% confidence interval. A high reliability of CIM −1.41–0.50%, max CV 1.45%, and ICC 3.1 > 0.961 was found for the different load levels. Additionally, the criterion validity based on the Pearson correlation coefficient was R2 = 0.993 and the limits of agreement, expressed by the accuracy (systematic bias) and the precision (SD), was between +9.45 × 10−3 m−1 and −6.78 × 10−3 m−1 for all load levels. The new measuring system offers both good accuracy (1.33 × 10−3 m−1) and high precision (4.14 × 10−3 m−1). However, the results are based on quasi-static ski deformations, which means that a transfer into the field is only allowed to a limited extent since the scope of the curvature model has not yet been definitely determined. The high laboratory-related reliability and validity of our novel ski prototype featuring PyzoFlex® technology make it a potential candidate for on-snow application such as smart skiing equipment.

Highlights

  • IntroductionA carved turn is defined by minimal or no lateral ski displacement relative to the track, and each point along the ski edge follows the path of the proceeding one [1,2,3,4]

  • Successive pairs of trials were evaluated at different load levels by calculating the change in mean (CIM), the coefficient of variation (CV) and the intraclass correlation coefficient (ICC 3.1) with a 95% confidence interval

  • Novel Prototype for Ski Deflection Detection Here, we present a new approach for ski deflection measurement relying on PyzoFlex®

Read more

Summary

Introduction

A carved turn is defined by minimal or no lateral ski displacement relative to the track, and each point along the ski edge follows the path of the proceeding one [1,2,3,4]. Skidded and carved turns differ in terms of ski trajectory and regarding ski deflection. In addition to the segmental differences in deflection along the ski, the temporal sequence of deflection varies in short time periods within a turning phase [5]. Temporal and segmental changes in deflection during alpine skiing give an essential insight into how the ski-snow interaction proceeds and provides information about the quality of a turn

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.