Abstract

Component analysis techniques for feature extraction in multi-sensor system (electronic nose) have been studied in this paper. A novel nonlinear kernel based Renyi entropy component analysis method is presented to address the feature extraction problem in sensor array and improve the odor recognition performance of E-nose. Specifically, a kernel entropy component analysis (KECA) as a nonlinear dimension reduction technique based on the Renyi entropy criterion is presented in this paper. In terms of the popular support vector machine (SVM) learning technique, a joint KECA–SVM framework is proposed as a system for nonlinear feature extraction and multi-class gases recognition in E-nose community. In particular, the comparisons with PCA, KPCA and ICA based component analysis methods that select the principal components with respect to the largest eigen-values or correlation have been fully explored. Experimental results on formaldehyde, benzene, toluene, carbon monoxide, ammonia and nitrogen dioxide demonstrate that the KECA–SVM method outperforms other methods in classification performance of E-nose. The MATLAB implementation of this work is available online at http://www.escience.cn/people/lei/index.html

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.