Abstract

After the liquefaction of sand, the prediction of anisotropy and heterogeneity is one of the complexities of constitutive law. This study aimed to develop a method to more effectively assess anisotropy and strain and stress distributions, and determine their history in cohesionless soil. To achieve this objective, instead of defining all the direction-dependent events on the three orthogonal planes of the Cartesian coordinate system, numerical integration was utilized to make use of 17 planes with pre-defined directions. This leads to a more accurate and powerful assessment of anisotropy and its effects. The constitutive equations of the proposed model were adjusted with a multilaminate framework, and its result for different monotonic and cyclic loading, drained and undrained conditions, and different pressures and void ratios were verified using the experimental data. Finally, the model's performance in predicting induced anisotropy is demonstrated under cyclic mobility conditions on the 17 planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.