Abstract

Fracture-cave carbonate reservoirs represent a significant amount of oil and gas resources worldwide, while their intrinsic complex pore network, large caves and tectonic fractures bring challenges to reservoir characterizations and productions. Many models have been proposed to solve the pressure transient analysis (PTA) solutions for such reservoirs. With recent explorations, the position of fractures and caves can be determined by seismic data. However, models using the position information with the coexistence of discrete fractures and caves were not reported in the literature. This paper proposes a novel semi-analytical model based on the Boundary Element Method (BEM), to describe the transient pressure behavior of the fracture-cave carbonate reservoirs. Basically, the proposed model treats the cave edge as an inner boundary and includes the fracture-cave fluid interchanges. As a results, the model's solution is proved to be flexible for arbitrary cave and reservoir shape. A typical system consisting of one fracture and one case is discussed in detail. The result indicates the well location is the key factor to the pressure response, where the pressure response is mostly affected by the cave volume and fracture conductivity when the well is on the cave and fracture, respectively. The sensitivities of three major parameters on the pressure response are analyzed. In addition, the proposed model is applied in two field cases. The result shows the proposed model is reliable and accurate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.