Abstract

Wireless sensor networks (WSNs) have been expected to improve the capability of capturing mechanical vibration dynamic behaviors and evaluating the current health status of equipment. While the expectation for mechanical vibration monitoring using WSNs has been high, one of the key limitations is the limited lifetime of batteries for sensor node. The energy harvesting technologies have been recently proposed. One of them shares the same main idea, that is, energy harvesting from ambient vibration can be converted into electric power. Employing the vibration energy harvesting, a novel self-powered wireless sensor node has been developed to measure mechanical vibration in this paper. The overall architecture of node is proposed. The wireless sensor node is described into four main components: the energy harvesting unit, the microprocessor unit, the radio transceiver unit, and accelerometer. Moreover, the software used to control the operation of wireless node is also suggested. At last, in order to achieve continuous self-powered for nodes, two operation modes including the charging mode and discharging mode are proposed. This design can effectively solve the problem of continuous supply power of sensor node for mechanical vibration monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.