Abstract

BackgroundAbsorption of EPA and DHA from Omega-3-acid ethyl ester (EE) concentrate supplements occurs most efficiently when taken in context of a fatty meal; adequate fat intake is required to release bile salts that emulsify and pancreatic enzymes that digest omega-3-containing lipids in the intestine. Current guidelines recommend reduction in fat intake and therefore there is a need to optimize the absorption of Omega-3 in those consuming low-fat or no-fat meals. To this end, BASF has developed an Absorption Acceleration Technology, a novel self-micro-emulsifying delivery system (SMEDS) formulation of highly concentrated Omega-3-acid EE which enables rapid emulsification and microdroplet formation upon entering the aqueous environment of the gut therefore enhances the absorption.MethodsTwo separate single dose, crossover studies were conducted to determine the relative bioavailability of omega-3-acid EE concentrate, either as a novel SMEDS formulation (PRF-021) or as control, in healthy fasted male and female adults at two dose levels (Study 1 “low dose”: 630 mg EPA + DHA in PRF-021 vs. 840 mg EPA + DHA in control; Study 2 “high dose”: 1680 mg EPA + DHA in PRF-021 vs. 3360 mg EPA + DHA in control). Blood samples were collected immediately before supplementation and at defined time intervals for 48 h. Plasma concentration of total EPA and DHA were determined for pharmacokinetic analysis, area under the curve (AUC) and maximum observed concentration (Cmax) was determined.ResultsTotal EPA plus DHA absorption from SMEDS formulation PRF-021 were 6.4 and 11.5 times higher compared to control in low- and high-dose studies respectively, determined as the ratio of baseline corrected, dose normalized AUC0-24h of PRF-021 over that of control. EPA and DHA individually showed differing levels of enhancement: the AUC0-24h ratio for EPA was 23.8 and 25.7 in low and high dose studies, respectively, and the AUC0-24h ratio for DHA was 3.6 and 5.6 in low and high dose studies, respectively. Cmax was also increased for both EPA and DHA 2.7- to 9.2-fold.ConclusionPRF-021 is a novel SMEDS formulation of Omega-3-acid EE demonstrating a marked improvement in absorption of a single dose of EPA and DHA EE under fasted conditions. This allows adequate absorption of Omega-3 from the supplement without the requirement of a high-fat meal.

Highlights

  • Absorption of Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) from Omega-3-acid ethyl ester (EE) concentrate supplements occurs most efficiently when taken in context of a fatty meal; adequate fat intake is required to release bile salts that emulsify and pancreatic enzymes that digest omega-3-containing lipids in the intestine

  • The present paper presents the results of two studies designed to compare the bioavailability of a single dose of Omega-3 self-micro-emulsifying delivery system (SMEDS) formulation PRF-021 to its parent high concentrate Omega-3 ethyl ester oil at two dosage amounts in healthy, fasted subjects

  • Because the endogenous levels of EPA and DHA significantly influence the assessment of systemic exposure, the pre-dose concentrations of EPA and DHA were subtracted on an individual basis, and the PK analysis was performed on baseline-corrected data

Read more

Summary

Introduction

Absorption of EPA and DHA from Omega-3-acid ethyl ester (EE) concentrate supplements occurs most efficiently when taken in context of a fatty meal; adequate fat intake is required to release bile salts that emulsify and pancreatic enzymes that digest omega-3-containing lipids in the intestine. Current guidelines recommend reduction in fat intake and there is a need to optimize the absorption of Omega-3 in those consuming low-fat or no-fat meals. To this end, BASF has developed an Absorption Acceleration Technology, a novel self-micro-emulsifying delivery system (SMEDS) formulation of highly concentrated Omega-3-acid EE which enables rapid emulsification and microdroplet formation upon entering the aqueous environment of the gut enhances the absorption. One hypothesis attempting to explain this discrepancy is that Omega-3 supplement bioavailability was not optimized during study design, for example, due to the lack of recommendations to take supplements with a high-fat meal [4]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.