Abstract

The separation and recycling processes of current cyclodextrin (CD)-based adsorbents are complicated. Thus, a novel composite based on a large surface area, porous, and self-floating tetrafluoroterephthalonitrile (TFN)-crosslinked CD polymer (FTFCD), was fabricated, characterized and applied to treat cationic dye pollutants. The characterization showed a porosity, good thermal stability, a stable crystal structure, and abundant functional groups on the prepared FTFCD, which had demonstrated great improvement on its adsorption capacity towards attention grabbing pollutants. The removal efficiency of the adsorbents for malachite green (MG) remained above 95% at pH 1 ∼ 10. In addition, the adsorbents were found to rapidly reach equilibrium governed by the pseudo-second-order kinetic model, and the maximum adsorption capacity of FTFCD was 1390.263 mg/g, as corroborated by the Langmuir isotherm model. While the phenolate groups of FTFCD found to electrostatically interacts with the MG strong cationic quaternary amine group, hydrogen-bonding was responsible for the hydroxyl group of FTFCD and the quaternary amine group binding. Meanwhile, the triangular cone configuration of MG makes it easy to be entrapped and absorbed in the hydrophobic cavity. Besides, after regeneration of exhausted FTFCD for five successive cycles, the MG removal efficiency still reached more than 80%. Thus, FTFCD could be applied as a potential alternative adsorbent for cationic dye removal owing to its excellent adsorption performance, convenient recycling, wide pH application, and environmental friendliness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call