Abstract

Many approaches for generating large quantities of recombinant protein in Escherichia coli fuse the protein of interest to a protein tag to enhance solubility and improve recovery. However, the fusion tags can confound downstream applications, as the fusion partner can alter the structure and biological activity of the recombinant protein and proteolytic removal of the fusion tags can be expensive. Here we describe a new system for production of native proteins in E. coli that allows for removal of the fusion tag via intracellular self-cleavage by the human rhinovirus 3C (HRV3C) protease. This system allows for parallel cloning of target protein coding sequences into six different expression vectors, each with a different fusion partner tag to enhance solubility during induction. Temperature-regulated expression of the HRV3C protease allows for intracellular removal of the fusion tag following induction, and the liberated recombinant protein can be purified by affinity chromatography by virtue of a short six-histidine tag. This system will be an attractive approach for the expression and purification of recombinant proteins free of solubility-enhancing fusion tags, and should be amenable to high-throughput applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.