Abstract

2′, 3′-cGAMP (CDN) as cGAS-STING pathway agonist is extensively used in tumor treatment. However, due to its negatively charged nature (containing two phosphate groups) and high hydrophilicity, CDN faces challenges in crossing cell membranes, resulting in reduced efficiency of its use. Additionally, CDN is susceptible to inactivation through phosphodiesterase hydrolysis. Therefore, the development of a new drug delivery system for CDN is necessary to prevent hydrolysis and enhance targeted accumulation in tumors, as well as improve cellular uptake for STING activation. In this study, we have developed peptide-polymer nanofibers (PEG-Q11) that incorporate thymine (T) and arginine (R) residues to facilitate complexation with CDN through the principles of Watson-Crick base pairing with thymine and favorable electrostatic interactions and bidentate hydrogen bonding with arginine side chains. The entrapment efficiency (EE) of PEG-Q11T3R4@CDN was found to be 51% higher than that of PEG-Q11@CDN. Due to its favorable biocompatibility, PEG-Q11T3R4@CDN was employed for immunotherapy in mouse CT26 tumors. In local tumor treatment, the administration of PEG-Q11T3R4@CDN at a low dose and through a single injection exhibited inhibitory effects. Furthermore, the local injection of PEG-Q11T3R4@CDN resulted in systemic therapeutic responses, effectively suppressing tumor metastasis by activating CD8 + T cells to target distant tumors. This research not only underscores the potential of PEG-Q11T3R4@CDN as an efficient therapeutic agent but also highlights its ability to achieve long-lasting systemic therapeutic outcomes following local treatment. Consequently, PEG-Q11T3R4@CDN represents a promising strategy for immunization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call