Abstract
Selenadiazole derivatives are synthetic organoselenium compounds with improved anticancer activity and greater selectivity than inorganic selenium. In this study, 4-(benzo[c][1,2,5]selenadiazol-6-yl)-benzene-1,2-diamine (BSBD) was shown to induce time- and dose-dependent apoptosis in SWO-38 human glioma cells by accumulation of a sub-G1 cell population, DNA fragmentation, nuclear condensation, caspase activation and poly(ADP-ribose) polymerase (PARP) cleavage. Further mechanistic investigation showed that BSBD treatment induced dephosphorylation of AKT and DNA damage-mediated activation of p53, leading to extensive apoptosis through the mitochondrial pathway. Our findings suggest that BSBD represents a potential human glioma therapeutic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.