Abstract

The friction stir lap welding (FSLW) of metal to polymer is a challenging work due to the unavoidable polymer overflowing. Facing this problem, a novel seal-flow multi-vortex friction stir lap welding (SM-FSLW) technology based on the subversively-designed multi-step pin was put forward. Choosing 7075 aluminum alloy and short glass fiber-reinforced polyether ether ketone (PEEK) as research subjects, the welding temperature, material flow, formation and tensile shear strength of dissimilar materials lap joint under the SM-FSLW were studied and compared with those under traditional FSLW based on the conical pin. The multi-step pin rather than the conical pin effectively hindered the polymer overflowing due to the formation of vortexes by the step, thereby attaining a joint with a smooth surface. Compared with traditional FSLW, the SM-FSLW obtained the higher welding temperature, the more violent material flow and the larger area with high flow velocity, thereby producing the macro-mechanical and micro-mechanical interlockings and then heightening the joint loading capacity. The tensile shear strength of lap joint under SM-FSLW was 27.8% higher than that under traditional FSLW. The SM-FSLW technology using the multi-step pin provides an effective way on obtaining a heterogeneous lap joint of metal to polymer with the excellent formation and high strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call