Abstract
Molecular docking is a computational technique which predicts the binding energy and the preferred binding mode of a ligand to a protein target. Virtual screening is a tool which uses docking to investigate large chemical libraries to identify ligands that bind favorably to a protein target. We have developed a novel scoring based distributed protein docking application to improve enrichment in virtual screening. The application addresses the issue of time and cost of screening in contrast to conventional systematic parallel virtual screening methods in two ways. Firstly, it automates the process of creating and launching multiple independent dockings on a high performance computing cluster. Secondly, it uses a Nȧi̇ve Bayes scoring function to calculate binding energy of un-docked ligands to identify and preferentially dock (Autodock predicted) better binders. The application was tested on four proteins using a library of 10,573 ligands. In all the experiments, (i). 200 of the 1,000 best binders are identified after docking only ~14 percent of the chemical library, (ii). 9 or 10 best-binders are identified after docking only ~19 percent of the chemical library, and (iii). no significant enrichment is observed after docking ~70 percent of the chemical library. The results show significant increase in enrichment of potential drug leads in early rounds of virtual screening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.