Abstract

Control chart pattern recognition (CCPR) can quickly recognize anomalies in charts, making it an important tool for narrowing the search scope of abnormal causes. Most studies assume that the observations are normal, independent and identically distributed (NIID), while the assumption of independence cannot always be satisfied under continuous manufacturing processes. Recent research has considered the existence of autocorrelation, but the recognition rate is overestimated. In this paper, a novel scheme is proposed to recognize control chart patterns (CCPs) in which the inherent noise is autocorrelated. By assuming that the inherent noise follows a first-order autoregressive (AR (1)) process, the one-dimensional convolutional neural network (1DCNN) is applied for extracting features in the proposed scheme, while the grey-wolf-optimizer-based support vector machine (GWOSVM) is employed as a classifier. The simulation results reveal that the proposed scheme can effectively identify seven types of CCPs. The overall accuracy is 89.02% for all the autoregressive coefficients, and the highest accuracy is 99.43% when the autoregressive coefficient is on the interval (−0.3, 0]. Comparative experiments indicate that the proposed scheme has great potential to identify CCPs in autocorrelated processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call