Abstract

A novel sandwich electrochemical impedimetric immunosensor was proposed to detect apolipoprotein-A1 (Apo-A1), a common biomarker for bladder cancer. The molybdenum disulfide/graphene quantum dot (MoS2/GQD) nanocomposites were modified on the surface of a glassy carbon electrode (GCE) and used to immobilize the biotinylated antibody (Ab1) with the help of chitosan and glutaraldehyde (denoted as BSA/Ab1/CHIT/MoS2/GQD/GCE). Pb(II)-thiol-β-cyclodextrin metal-organic framework (denoted as Pb-MOF) was synthesized with lead metal ions and thiol-β-cyclodextrin ligands by a one-pot solvothermal method, and then, gold nanoparticles were modified on the surface of Pb-MOF (Pb-MOF-AuNPs) by Au-S bond, which was used as signal label for the recombinant antibody (Ab2). When the immunosensor of BSA/Ab1/CHIT/MoS2/GQD/GCE reacted with Apo-A1, Pb-MOF-AuNPs-Ab2/BSA was connected to the electrode when immunoreaction occurred, and an immune sandwich structure was formed, which led to significantly increased charge transfer resistance of electrochemical probe for ferrocyanide (II)/(III) within the frequency range 10-1 ~ 105Hz at 5 mV amplitude and the potential of 0.180V (vs. SCE). Based on this principle, the quantitative detection of Apo-A1 was established. The relative change of electrochemical resistance and the logarithmic value of Apo-A1 concentration showed a linear relationship with a linear coefficient of 0.9989 in the range 1.00pgmL-1 and 1.00μgmL-1 with the limit of detection of 0.30pgmL-1. The selectivity, repeatability, and other performance of the proposed immunosensor were also investigated. The immunosensor was successfully applied to the detection of real serum and urine samples with recovery in the range 96.4 ~ 109.1% (RSD < 3.8%), indicating that it could be helpful for the clinical diagnosis of bladder cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.