Abstract

Human adenoviruses (HAdVs) are common viruses that can cause local outbreaks in schools, communities and military camps, posing a huge threat to public health. An ideal POCT device for adenovirus detection in resource-limited settings is critical to control the spread of the virus. In this study, we developed an integrated and electricity-independent sample-to-answer system that can complete nucleic acid extraction, amplification, and detection at room temperature. This system is suitable for field and on-site detection because of its rapidity, sensitivity, lack of contamination, and lack of requirements of high-precision instruments and skilled technicians. It consists of two separate modules, ALP FINA (alkaline lysis with the paper-based filtration isolation of nucleic acid) and SV RPA (sealed and visual recombinase polymerase amplification). The extraction efficiency of ALP FINA can reach 48 to 84%, which is close to that of the conventional centrifuge column. The detection sensitivity of SV RPA is close to 10 copies/μL of AdvB and AdvE without aerosol contamination after repeated operations. When SV RPA was applied to the detection of nasopharyngeal swab samples of 19 patients who were infected with AdvB or AdvE as well as 10 healthy volunteers, its sensitivity and specificity reached 100%, respectively. IMPORTANCE HAdV infections are readily transmittable and, in some instances, highly contagious. Early and rapid diagnosis is essential for disease control. In this work, we developed a portable, disposable, and modularized sample-to-answer detection system for AdvB and AdvE, which rendered the entire test to be completely independent of electricity and other laboratory infrastructure. Thus, this detection system can be applied in resource-limited settings, and it has the potential to be further developed as an early diagnosis method in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.