Abstract
The multiple biologically active trace element delivery remains a problem in regeneration medicine and tissue engineering. A novel approach to fabricate the biologically active trace elements assembly in a core–shell system for cooperative controlled-release has been proposed. Firstly, using a pH-dependent electrostatic interaction, zinc and strontium ions were incorporated into the silica gel nanospheres. Subsequently a porous octacalcium phosphate (OCP) shell was coated on the nanospheres tailored by poly(acrylate sodium) molecules. In vitro test shows that this hierarchical multilayered nanostructure can achieve a shell-/pH-dependent controlled-release of silicon, strontium and zinc ions. The wet-chemical route to selective synthesis of the core–shell Silica@OCP system may provide a general model to develop cooperative encapsulation of biologically active ions in a silica-based system by using layer-by-layer assembly technique for controlled-release in biomedical areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.