Abstract

High-temperature superconductor (HTS) flux pumps enable large currents to be injected into a superconducting coil without requiring normal-conducting current leads. We present results from an experimental axial-type HTS rotating flux pump that employs a ferromagnetic circuit to focus incident flux upon a coated-conductor stator wire. We show that this device can inject currents of > 50 A into an HTS coil at 77 K and is capable of operating at flux gaps greater than 18 mm. Accommodating a cryostat wall within this flux gap will enable future flux pump designs, in which all moving parts are located outside the cryostat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.