Abstract

Thin amorphous diamond-like nanocomposite (a-DLN) films are deposited on p-type crystalline silicon (c-Si) by plasma assisted chemical vapour deposition (PACVD) technique to use it as an ammonia (NH3) gas sensor operable at room temperature. The non-linear current–voltage (I–V) characteristic of a-DLN/c-Si heterojunction shows a very good rectifying property of the junction in air and quick sensitivity in NH3 gas at room temperature. The current output in reverse biased condition of the a-DLN/c-Si heterojunction is ~ 15 times higher in NH3 than in air. Sensor also shows a good recovery property to the original state, even at room temperature. Sensing material is characterized by using Field Emission Scanning Electron Microscope (FESEM), Fourier Transform Infrared Spectroscopy (FTIR) and UV–VIS Near-IR Spectroscopy, to understand the sensing behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.