Abstract
The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals. However, it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions. This paper investigates impulsive signals detection of a single-point defect rolling bearing and presents a novel data-driven detection approach based on dictionary learning. To overcome the effects harmonic and noise components, we propose an autoregressive-minimum entropy deconvolution model to separate harmonic and deconvolve the effect of the transmission path. To address the shortcomings of conventional sparse representation under the changeable operation environment, we propose an approach that combines K-clustering with singular value decomposition (K-SVD) and split-Bregman to extract impulsive components precisely. Via experiments on synthetic signals and real run-to-failure signals, the excellent performance for different impulsive signals detection verifies the effectiveness and robustness of the proposed approach. Meanwhile, a comparison with the state-of-the-art methods is illustrated, which shows that the proposed approach can provide more accurate detected impulsive signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.