Abstract

To enhance the precision of rolling bearing fault diagnosis, an intelligent hybrid approach is proposed in this paper for signal processing and fault diagnosis in small samples. This approach is based on advanced techniques, combining parameter optimization variational mode decomposition weighted by multiscale permutation entropy (MPE) with maximal information coefficient and multi-target attention convolutional neural networks (MTACNN). First, an improved variational mode decomposition (VMD) is developed to denoise the raw signal. The whale optimization algorithm was used to optimize the penalty factor and mode component number in the VMD algorithm to obtain several intrinsic mode functions (IMFs). Second, separate MPE calculations are performed for both the raw signal and each of the IMF components obtained from the VMD decomposition; the results are used to calculate the maximum information coefficient (MIC). Subsequently, each MIC is normalized and converted to a weight coefficient for signal reconstruction. Ultimately, the reconstructed signals serve as input to the MTACNN for diagnosing rolling bearing faults. Results demonstrate that the signal processing approach exhibits superior noise reduction capability through simple processing. Furthermore, compared to several similar approaches, The method proposed for fault diagnosis achieves superior performance levels in the fault pattern recognition target and the fault severity recognition target.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.