Abstract

The regulation of macrophage lipoprotein lipase by cytokines is of potentially crucial importance in the pathogenesis of atherosclerosis. We have shown previously that macrophage lipoprotein lipase expression is suppressed by interferon-gamma (IFN-gamma) at the transcriptional level. We investigated the regulatory sequence elements and the transcription factors that are involved in this response. We demonstrated that the -31/+187 sequence contains the minimal IFN-gamma-responsive elements. Electrophoretic mobility shift assays showed that the binding of proteins to two regions in the -31/+187 sequence was reduced dramatically when the cells were exposed to IFN-gamma. Both competition electrophoretic mobility shift assays and antibody supershift assays showed that the interacting proteins were composed of Sp1 and Sp3. Mutations of the Sp1/Sp3-binding sites in the minimal IFN-gamma-responsive elements abolished the IFN-gamma-mediated suppression of promoter activity, whereas multimers of the sequence were able to impart the response to a heterologous promoter. Western blot analysis showed that IFN-gamma reduced the steady state levels of Sp3 protein. In contrast, the cytokine decreased the DNA binding activity of Sp1 without affecting the protein levels. These studies therefore reveal a novel mechanism for IFN-gamma-mediated regulation of macrophage gene transcription.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.