Abstract

The small GTPase RhoA and its downstream effectors, the Rho-associated kinase (Rho-kinase) family, are known to regulate cell morphology, motility, and tumor progression via the regulation of actin cytoskeleton rearrangement. In the present study, we evaluated the role of Rho-kinase in the intracellular endocytic trafficking of ligand-induced phosphorylated epidermal growth factor receptor (pEGFR). We investigated the time course of the internalization fate of EGF-induced pEGFR via the early/late endocytic pathway in human fibrosarcoma cell line HT1080 cells using Y-27632, a selective Rho-kinase inhibitor. We found, using confocal immunofluorescence microscopy and Western blot analysis, a large accumulation of pEGFR in the nuclei of HT1080 cells. In contrast, we observed decreased amounts of the pEGFR-positive staining in the nuclei along with an accumulation of cytosolic pEGFR staining when the cells were incubated for 15-30min in the presence of Y-27632, implying that an aberrant endocytic trafficking mechanism of pEGFR occurs in HT1080 cells whereby pEGFR might be selectively translocated into the nucleus. Moreover, we demonstrated that after 15-min of stimulation with Texas Red-EGF, increasing numbers of pEGFR-positive staining that had colocalized with Texas Red-EGF-positive punctate staining were seen in the cytoplasm of HT1080 cells but after 30-min of stimulation, most of this staining had disappeared from the cytoplasm and a large accumulation of pEGFR-positive staining appeared in the nucleus. Thus, nuclear accumulation of pEGFR appears to occur in an EGF-dependent manner. In contrast, such nuclear pEGFR-positive staining was not seen in the Y-27632-treated cells. Furthermore, silencing of RhoA or Rho-kinases I/II by sequence specific siRNAs considerably inhibited the EGF-dependent nuclear accumulation of pEGFR. Collectively, these results provide the first evidence that Rho-kinase signaling pathway plays a suppressive role in the intracellular vesicle trafficking of pEGFR via the endocytic pathway and that an increased Rho-kinase activity leads to the attenuation of the normal endocytic vesicular traffic of pEGFR via the early/late endocytic pathway, instead causing pEGFR to be trafficked out of the endocytic vesicles into the nucleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.