Abstract

Transient receptor potential vanilloid type 1 (TRPV1) is a molecular sensor for detecting adverse stimuli, such as capsaicin, heat, and acid. TRPV1 has been localized in keratinocytes and is suggested to be a mediator of heat-induced matrix metalloproteinase-1 (MMP-1). With regard to the multimodal activation of TRPV1, we hypothesize that TRPV1 might also mediate UV-induced MMP-1 in keratinocytes. In HaCaT, a human keratinocyte cell line, we initially confirmed capsaicin-induced membrane current and Ca(2+) influx. UV irradiation induced slow and persistent calcium influx and increased membrane current, which was inhibited by TRPV1 inhibitors (capsazepine and ruthenium red). The UV-induced MMP-1 expression in HaCaT was also decreased by TRPV1 inhibitors and was facilitated by capsaicin. Knock-down of TRPV1 using siRNA transfection also decreased MMP-1 expression, as well as UV-induced Ca(2+) influx in HaCaT. UV failed to induce MMP-1 expression in HaCaT cells cultured in Ca(2+)-free media. Both the UV-induced increase in [Ca(2+)](i) and MMP-1 were suppressed by Gö6976 (a calcium-dependent PKC inhibitor), but not by rottlerin (a calcium-independent PKC inhibitor). In addition to a plausible role of TRPV1 in UV-induced MMP-1 expression, we showed that UV increased TRPV1 expression in both HaCaT cells and human skin in vivo. From these results, we suggest that UV-induced MMP-1 expression might be mediated in part by PKC-dependent activation of TRPV1 and subsequent Ca(2+)-influx in human keratinocytes. J. Cell. Physiol. 219: 766-775, 2009. (c) 2009 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call