Abstract

Intracellular pH conditions many cellular systems, but its mechanisms of regulation and perception are mostly unknown. We have identified two yeast genes important for tolerance to intracellular acidification caused by weak permeable acids. One corresponded to LEU2 and functions by removing the dependency of the leu2 mutant host strain on uptake of extracellular leucine. Leucine transport is inhibited by intracellular acidification, and either leucine oversupplementation or overexpression of the transporter gene BAP2 improved acid growth. Another acid-tolerance gene is GCN2, encoding a protein kinase activated by uncharged tRNAs during amino acid starvation. Gcn2 phosphorylates eIF2α (eukaryotic initiation factor 2α) (Sui2) at Ser51 and this inhibits general translation, but activates that of Gcn4, a transcription factor for amino acid biosynthetic genes. Intracellular acidification activates Gcn2 probably by inhibition of aminoacyl-tRNA synthetases because we observed accumulation of uncharged tRNAleu without leucine depletion. Gcn2 is required for leucine transport and a gcn2-null mutant is sensitive to acid stress if auxotrophic for leucine. Gcn4 is required for neither leucine transport nor acid tolerance, but a S51A sui2 mutant is acid-sensitive. This suggests that Gcn2, by phosphorylating eIF2α, may activate translation of an unknown regulator of amino acid transporters different from Gcn4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.