Abstract

Maintaining proper epithelial cell density is essential for the survival of multicellular organisms. Although regulation of cell density through apoptosis is well known, its mechanistic details remain elusive. Here, we report the involvement of membrane-anchored phosphatase of regenerating liver (PRL), originally known for its role in cancer malignancy, in this process. In epithelial Madin-Darby canine kidney cells, upon confluence, doxycycline-induced expression of PRL upregulated apoptosis, reducing cell density. This could be circumvented by artificially reducing cell density via stretching the cell-seeded silicon chamber. Moreover, small interfering RNA-mediated knockdown of endogenous PRL blocked apoptosis, leading to greater cell density. Mechanistically, PRL promoted apoptosis by upregulating the translation of E-cadherin and activating the TGF-β pathway. Morpholino-mediated inhibition of PRL expression in zebrafish embryos caused developmental defects, with reduced apoptosis and increased epithelial cell density during convergent extension. Overall, this study revealed a novel role for PRL in regulating density-dependent apoptosis in vertebrate epithelia. This article has an associated First Person interview with the first author of the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call