Abstract
Histone deacetylases (HDACs) form HDAC-associated complexes and play an essential role in transcriptional repression. The functional significance of HDAC-associated proteins in the progression of the cell cycle and in cell death remains to be established. Here, we investigated the molecular mechanisms by which methyl CpG-binding domain protein 3 (MBD3), a component of the HDAC complex, modulates these processes via its functional interplay with HDAC. Depletion of MBD3 induced an arrest at the G 2/M transition and resulted in defective mitosis in cancer cells. These effects appear to be associated with the transcriptional modulation of key cell cycle-regulator genes, including CylinB1, Plk1, and Survivin. Chromatin immunoprecipitation analyses revealed that the transcription of these cell cycle regulators is modulated by MBD3, supporting its direct role in their transcriptional repression. These findings collectively support a role for MBD3 in cell cycle progression and cell death as a modulator of HDAC-mediated transcription.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.