Abstract

Lidar is an active remote sensing instrument, but its effective range is often limited by signal-to-noise (SNR) ratio. The reason is that noises or fluctuations always strongly affect the measured results. To resolve this problem, a novel approach of using least-squares support vector machine (LS-SVM) to reconstruct the Lidar signal is proposed in this paper. LS-SVM has been proven as robust to noisy data; the Lidar signal, which is strongly corrupted by noises or fluctuations, can be thought as a function of distance. So detecting Lidar signals from high noisy regime can be regarded as a robust regression procedure which involves estimating the underlying relationship from detected signal data set. To apply the LS-SVM on Lidar signal regression, firstly the noises in Lidar signal is analyzed and then the traditional LS-SVM algorithm is modified to incorporate the a priori knowledge of the Lidar signal in the training of LS-SVM. The experimental results demonstrate the effectiveness and efficiency of our approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call