Abstract

We designed a vision system with a novel architecture composed of a silicon retina, an analog CMOS VLSI intelligent sensor, and FPGA. Two basic pre-processes are done with the silicon retina: a Laplacian-Gaussian (∇2G)-like spatial filtering and a subtraction of consecutive frames. Analog outputs of the silicon retina were binarized and transferred to FPGA in which digital image processing was executed. The system was applied to real-time target tracking under indoor illumination. Namely, the center of a target object was found as the median of the binarized image. The object could be tracked within the video frame rate in indoor illumination. The system has a compact hardware and a low power consumption and therefore is suitable for robot vision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.